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Abstract— Elastic—plastic (path dependent but time-independent) materials, linear and isotropic in
the elastic range and governed by the von Mises yield condition and the relevant associated flow
rule, are considered. Both kinematic and isotropic hardening are included. Starting from previous,
more general but partial, results and exploiting the purely deviatoric nature of plastic flow, a plane
strain version of the constitutive law is formulated in terms of in-plane variables only. The actual
plastic strains are replaced by equivalent in-plane measures and the effects of transverse yielding
appear as a fictitious, directional kinematic hardening. On this basis, the plane strain elastic—plastic
problem can be formulated in a way fully analogous to the equivalent plane stress one: as in the
elastic case, differences are confined to the expressions of the constitutive parameters.

1. INTRODUCTION

The linear elastic isotropic plane strain problem can be formulated in terms of the in-plane
variables only ; the transverse normal stress 6. does not vanish, but can be computed once
the in-plane solution has been obtained. In the inelastic case, however, the constitutive law
usually depends on ¢. in a complicated manner and its elimination is not equally easy. In
computations, often the same constitutive relations as for the three-dimensional case are
employed, thereby exploiting only partially the plane nature of the problem.

A plane strain formulation of the rate constitutive law for standard elastic—plastic
materials was proposed by Corradi and Gioda (1979). The plane strain hypotheses and the
elastic portion of the constitutive relation permitted the expression of ¢. as a function of
the remaining stress and of the non-vanishing plastic strain components. An equivalent, in-
plane yield function was defined on this basis, which did not depend explicitly on o., and it
was shown that the associated flow rule remained valid provided the actual plastic strains
were replaced by equivalent in-plane measures, accounting for plasticity in the transverse
direction. The effects of transverse yielding appeared as a fictitious hardening in the in-
plane representation.

The formulation, however, was not completely “plane”, in that the yield function was
affected by the current value of the transverse plastic strain component p., which appeared
as an additional material state variable. Since the state is supposed to be known at the
instant at which the rate law applies, this is perfectly acceptable from a theoretical point of
view. When performing computations, however, the presence of p. is a source of difficulties
and its elimination is desirable. This result is readily achieved if piecewise linear elastic—
plastic relations are used (Cohn and Maier, 1979), and in this case the plane strain problem
differs from the equivalent plane stress one only for the constitutive law to be applied in
either case. Computations performed by Corradi and Gioda (1980) for axisymmetric
cylinders demonstrated the effectiveness of the formulation.

Even if meaningful, this is however a rather restrictive case and in general the elim-
ination of p. is not equally easy. The problem arises because, due to the irreversible nature
of plastic behaviour, the constitutive relations can only be written in terms of rates. The
rates of p. and of the in-plane plastic strain components are related by the normality law,
but not the total values accumulated in the preceding plastic evolution. For a number of
yield conditions of engineering importance, however, normality implies that plastic strain
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rates are purely deviatoric, a feature which is shared by total values as well and permits the
elimination of all transverse components from the plane strain law.

In this paper, such a law is constructed for materials which are linear and isotropic in
the elastic range and are governed by the von Mises yield condition, accounting for, possibly
nonlinear, kinematic and isotropic hardening. For the sake of simplicity, thermal effects
are not considered; however both thermal strains and dependence of the yield condition on
temperature, in the form introduced by Prager (see Naghdi 1960), can be easily included.
Their influence was discussed in Corradi and Gioda (1979) and no difference whatsoever
arises in the present context.

Notation

A vectorial notation is mainly used. Column vectors and matrices are denoted by bold
face symbols. A row vector is indicated as the transpose of a column one. The derivative
of column vector a with respect to column vector b is defined so that the resulting matrix
M = Ja/éb has components M = Ca;/ch,. The derivative of a scalar with respect to a
column (row) vector is therefore a column (row) vector. Moreover for any scalar function
f(a), with a = Ab, the chain rule of differentiation states

o _oadf .Y
éb dboa = da

Superscripts T and — | mean transpose and inverse, respectively. A superposed dot denotes
the time derivative. When tensorial notation is used, summation on repeated indices is
understood.

2. REVIEW OF ELASTIC-PLASTIC LAWS FOR STANDARD MATERIALS

Strains are supposed to be small enough to be treated as infinitesimal quantities. In
the absence of temperature changes, their total values ¢, can be decomposed as the sum of
elastic and plastic contributions, the latter denoted by &f. For an elastically linear and
1sotropic material, total strains can be written as

l1+v v
& = " Oy~ Eakké,j-}—a,‘} €3]

where ¢, is the unit (Kronecker) second order tensor. The plastic behaviour of the material
is governed by the von Mises yield condition. The loading (or yield) function is

G026 1) = [5055— 1) (85— X)) Z — G0 (k) @)
where ¢, is the instantaneous uniaxial yield limit, s;; is the stress deviator tensor and

oviel,

O¢f]

xileh) = €)

is the so-called back-stress tensor, also of deviatoric nature, accounting for kinematic
hardening. Equation (3) expresses it as the gradient of a twice differentiable and convex
function of the current value of total plastic strains, denoted by V = F(ef). The simplest
assumption is

Vieh) = %cs,",s{j Xy = cel; (c>0) (4a,b)

and is referred to as linear kinematic hardening. What follows, however, is not limited to
this case.
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Isotropic hardening is also present in eqn (2), since the yield limit 6, is a (non-
decreasing) function of the internal variable k = }5 k(1) dt, with £ > 0 when plastic flow
actually occurs. The two most widely used expressions. known as strain-hardening and
work-hardening. respectively, are

K=Geen)' k=08 (5a,b)
The instantaneous elastic range is defined by the inequality ¢ < 0. When ¢ = 0, plastic

strain rates may develop and are governed by the associated flow rule and Prager’s con-
sistency condition. They can be expressed as follows (Maier, 1969)

b Y .
& = Ly ¢ =- ¢ 6, —hi (6a,b)
Co, 00
with
;=0 if ¢<0 (7a)
£20.0<0,.¢i=0 if ¢=0. (7b)

Equation (6a) is often referred to as the normality law. In eqn (6b), A is the hardening
parameter, non-negative in the present context. Comparison between eqn (6b) and the
expression of the time derivative of ¢ establishes

. 0 op b, doy
—hi = &+ o K= A & — I C.
Oel, oK cely O CK

Since

and because of eqns (3) and (6a), it is

&’V 0 d¢ oy
Cel; Oehy éo, Co, 0K

hy (8a)

where k was expressed as & = /,4. In particular, from egns (5) one obtains

hy = <% °¢ ﬁé) " or h, =0, @ (8b,c)

3 do,,; Co,

3. PLANE STRAIN FORMULATION

The above relations will now be specialized for a body in a state of plane strain normal
to the z = x, axis. The following three-component vectors are introduced

e=[e, =& .6 =£.7, = 26" (9a)
p=Ip. =el.p = ehpy = 260" (9b)
6=[0,=0,,,0,=0y,0, =0,] (9¢)
=00 =00 = 2o X = Xa2l" (9d)

The plane strain hypothesis states that ¢. = 53, 7., = 2&5; and ., = 2&;, are equal to zero.



3518 A. Capsoni and L. Corradi

The constitutive law under consideration also entails (-);; =(-);; = 0 for all variables.
However, the transverse components

b-= 8{’73’ 0. =033, %: = %33 (9e)

do not vanish. Note that, as eqns (9a,b) show, for shearing strains the engineering definition,
twice the corresponding tensorial component, is adopted. It follows, in particular

1 0 0
ehel =p'Cp+p? with C=|0 1 0 (10a)

0 0 12
6,8 =6 pto.p.. (10b)

Function ¥V = V(p, p.) is defined so that eqn (3) reads
ov

= =-— with V=Vp,p.). 11
e FT M (p.p.) (11

The elastic portion of the constitutive law can now be split in the pair of relations

g = D[S - (p+ "l‘p:)] 0. = V”Ta - Ep: (lzaab)
where
{ 1—v v 0
E I 0 :
Vv —V
= , =11 13a,b
(1+v)(1—2v) 1 —2v # (13a,)
0 0 0
2
The vector
P=p+vup. = [p.+wp..p, +vp-.p]" (14)

defines the equivalent in-plane plastic strains, accounting for the transverse component
contribution through the elastic Poisson ratio v. Then, eqn (12a) becomes

o =D(—P). (15)
Equation (12b) permits the elimination of o. from the constitutive law. As was shown in

Corradi and Gioda (1979), any loading function of the form ¢ = ¢(e,0_,p, p.. k) can be
transformed in the equivalent in-plane expression

(D(O', P’pzv K) = (tb(dﬁ 6. = VﬂTG—Ep:, P= P“’l‘[’:vl’:» K)' (16)

Then, the rate law is expressed by the following relations, formally identical to eqns (6)
and (7)

P=N, ®&=N'¢—-H (17a,b)

/

0 if ®<0 (18a)
120,0<0,di=0 if ®=0 (18b)
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with
’:q) ol ﬂ (,, 2
NP H:/1+E<"¢>. (19a,b)
‘e (o éa. 0o

The value of the internal variable k keeps unchanged, even if in the relevant expression of
K, p is replaced by P and o., if present, can be eliminated.

4. PLANE STRAIN FORM OF THE VON MISES PLASTICITY CONDITION

The plane strain loading function eqn (16) contains p. as an additional material state
variable. For some plasticity laws of engineering interest. however, no volume change is
associated to plastic flow and this feature can be exploited to further simplify the plane
strain law.

The von Mises condition belongs to this category and the procedure is now illustrated
with reference to it. If written in terms of stress rather than stress deviator components, the
expression (2) of the yield function reads, in the plane strain case

(vb = 1(6* o, Xs X_-)*O'()(K) g 0 (20a)

where

2
2

a = (o-\’ _X,\‘)z - (0\ 7X\)(O-\’ — % ) +(G\ _Xr)z +3(Tw a8 ):
+ (O': AX:)Z - (G\ - X\)(U: - X,:) - (gj' _XV\‘)(O-: - X:) (ZOb)

and back-stresses are given as functions of non-vanishing plastic strain components by eqn
(11). Let the following matrix be introduced

2 =1 0]
m= -1 2 0 (21)
0 0 6

and note that from the expression (13b) of vector g it follows "y = 2 and my = u. Then,
eqn (20b) can be compactly written as

2 = (O %) MG — %) (22)
with

Gy =C—UO. Yx = %~ HY-- (23a,b)
The plastic incompressibility condition reads

p-=—p.+p)=—pn'p. (24)

By introducing the above relation into eqn (14), one obtains

I—v —v 0
P=Ap A=l—vuu" =| —v 1—v 0} (25a,b)
0 0 1

Since the material is elastically compressible (v < 0.5), matrix A is non-singular and egn
(25a) can be inverted to give
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l1—v v 0

p=A""'P A-}:1—2v v 1—v 0 | (26a,b)

It can be easily verified by direct substitution that the following equalities hold

1
Au=(1-2v)u Ay = ‘1*:‘2—‘}[1. (27a,b)

By introducing eqn (26a) into eqn (24), account taken of eqn (27b), one obtains

! P (28)

= —p"A" P = — ,
P Hu l—2v”

The expression (12b) of the transverse stress component then becomes
E
. =vu'e+ -——u'P. 29
ag. v 6’+172vﬂ (29)

This value can be substituted into eqn (23a), to get

E E
6,=A6— ——uu'P=Ale——— TP:|.
* ]—2vﬂ” |: (1—2v)° hp

By introducing the fictitious back-stress vector

1 1 0
1 1
IT=EIP, I = - up' = 5 1 1 0 (30a,b)
(1-2v) (1—2v) 0 0 0
the above relation becomes
o, = Alg—1I]. (31

Now let the function V(p, p.) be expressed in terms of P by means of eqns (26a), (28) and
an equivalent, in-plane back-stress vector g = 0V/6P be introduced. Account taken of
symmetry of A, the chain rule of differentiation establishes

gV v op.ov
0P P op P Op.

= A" (1 — ). (32)
Hence
AL = AB. (33)

If eqns (31) and (33) are introduced in eqn (22), one realizes that eqns (20) are replaced by
the expression

®(0.P, k) = [;(6 —X)"™™M(a—X)]'? —ao(x) (34a)

where
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2—2v+2v? —1=2v42v?
M=AmA = —1-2v4+2y" 2—-2v+2»" 0 (34b)
0 0 6
and
v
X=I1+p8=EIP+ — = X(P). (34c¢)

P

Equations (34) express the von Mises loading function in terms of in-plane variables only,
namely the in-plane stress components collected in vector ¢ and the equivalent in-plane
plastic strains P (isotropic hardening is always governed by the additional internal variable
k). X is the total, equivalent in-plane back-stress vector composed, as eqn (34c) shows, of
two contributions: g = @V/0P incorporates the actual material kinematic hardening, while
IT accounts for the effects of yielding in the transverse direction, which appear as an
additional kinematic hardening in the plane; since matrix I has rank one, this term makes
the instantaneous elastic domain move in a definite direction : eqns (30) in fact show that
itis alwaysn, = n,and n,, = 0.

As an example, the in-plane back-stress vectors are computed for linear kinematic
hardening. Because of eqns (4) and (10a), the plane strain expression of function V reads

V(p.p:) = 3¢(p"Cp+p?).
By introducing eqns (26a) and (28). one obtains

V(P)=3cPTOP O =A 'CA'+I'=3M"". (35a,b)
Hence

B=3M"'P X=[E[+3M']P. (36a,b)

5. THE RATE LAW

The rate relations, eqns (17) and (18) associated to the plane strain von Mises loading
function, eqns (34), are now established, i.e. the expressions for the in-plane outward
normal vector N and of the equivalent in-plane hardening parameter H are derived. Since
plastic flow can actually occur only when ® = 0, the equality

2= [(6—X)"M(6—X)]'* = 0,(x) (37)

is assumed to hold in the sequel.
The normal vector N is straightforwardly obtained by writing

3]

N =

b1
= —M(s—X). (38)

e 20

™

To express H. consider first that. by comparing eqn (17b) to the time derivative of @,
namely

o ob . D
P+ —«

daT OPT CK

one infers
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oo . oD
P .

i= — - —K. 9
Hi pT o K (39
The chain rule of differentiation and eqn (3a) state
o _iXoo X
P oPSX P
From eqn (34c¢) it also follows
JX oIl o 0 oV
p-op op Tt pap
By introducing the symmetric matrix
v oV
= = 4
X (%= ama) “
and by substituting eqn (17a) for P, one obtains
ob . .
— P = NT(ET +K)N/. (41a)
oPT

On the other hand, since « affects the loading function only through the instantaneous yield
limit oy, the last term in eqn (39) reads

b da, .
—B;C‘K _Ehl/' (41b)

where, as done when writing eqns (8), ¥ was expressed in the form
K = hh. (42)

By comparing eqns (41) with eqn (39), one realizes that the hardening parameter H can be
expressed as the sum of three contributions, namely

H=H.+H.+H, 43)
where

day

He=ENTN  Hc=N'KN  H=-2

hy. (44a—)

The first governs the fictitious plane strain hardening. By substituting eqn (38) for N, one
obtains after some straightforward algebraic manipulations

HE = % M[(G.\'_Xx)”l’(o‘y—‘x}‘)]z' (45)
o5(k)

If the material is perfectly plastic (¢, = constant, X = IT) only this contribution is present.
The second contribution Hy, defined by eqn (44b), accounts for material kinematic

hardening. If this is linear, from eqn (35) follows K = 3¢ M~'. Then, by substituting eqn

(38) for N and remembering that when plastic flow develops eqn (37) holds, one obtains



Formulation of the elastic~plastic constitutive law 3523

Finally, H,incorporates the influence of previous plastic strain history on the instantaneous
yield limit (isotropic hardening). Its expression depends on the nature of the function
g, = 0o(x) and on the definition of the internal variable x itself. In the strain-hardening
case, eqns (5a) and (10a) establish for k the expression

k= hith=[GECp+p)]'"
and, by proceeding as in the previous case, one obtains
=1 (47a)
On the other hand, for work-hardening eqns (5b) and (10b) yield
K=h"A=6"p+o.p..

By using eqns (26), (28), (29) and (38), the following expression is arrived at

*l—(a —X)"™M(s —I1).
20,

hyh =
By substituting X—p for IT and remembering eqn (37), one obtains the alternative
expression

B = 00+ 5, 8" Mo —X). @70)

If material hardening is purely isotropic, f = 0 and the two expressions (47) for 4, become
identical, provided that the relevant definitions for & are given the same dimension for
multiplying the first, or dividing the second, by ag,(x). It is in fact well known that in this
case the same behaviour can be represented by either definition. When kinematic and
isotropic hardening are combined differences arise. Note, in particular, that ;" depends
explicitly on the equivalent in-plane back-stress vector . Note also that in eqn (43) the
sum h = Hy+ H, is the original, material hardening coefficient, which is now expressed in
terms of in-plane variables, but keeps its value unchanged.

6. ILLUSTRATIVE EXAMPLE

Some aspects of the plane strain behaviour are now discussed with reference to an
example. The value v = 0.25 is assumed for the elastic Poisson ratio and the following stress
states are considered

g, = t_TOS O'}- = 776'05 ‘CY-‘. = O (48)

where &, is the initial yield limit.

A peculiar feature of the plane strain representation is the fictitious hardening con-
tribution. This is present even if the material is perfectly plastic and this case is first
examined. The back stress vector coincides with IT, eqns (30), and, for the value of v
considered, reads
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500 — (%X

H (Ux,xx)/ao

8.00

4.00 —

Fig. 1. Evolution of the plane strain yield surface for perfect plasticity. Stress path eqn (48) with
# = 0.75. (1) Initial position: (2) position for S = 4.0; (3) limit situation (S = 8"/\/3)'

E
X = l_l = 4E(P\ +P\).u = 0yTH n= 40__(PY+P\) (49a’b)
0

(the bar over g, was eliminated, the yield limit being constant). Note that the stress path
eqns (48) 1s radial only in the plane, since the transverse stress component ¢, is not
proportional to S. In fact, account taken of the above relations, eqn (29) becomes

)
=0 Mg 1 (50)
ay 4 2

By introducing eqns (48) and (49) in eqn (34a), the following expression for the plane strain
yield function is arrived at

2
> Go

2 = [ [S7(13 =220+ 130%) —4(1 + ) Sn+ 4], (51)

O =u5—0g,

In the plane o,-0,, the elastic range is bounded by the instantaneous yield surface @ = 0,
an ellipse centered at the point X, = X, = 7, the current value of the back stress parameter
eqn (49b). Initially it is 7 = 0 and the ellipse is centred at the origin (curve 1 in Fig. 1).
When the plastic flow develops, the yield surface translates along the ¢, = o, axis, remaining
within the strip

2 2
- 6,<0.—0, <=0, (52)
NE 3

which defines the plane strain limit domain for perfectly plastic materials.
When S increases from zero, the response is elastic up to the value
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4
S =—=———s. (53)
J13=220+13

The stress point is now on the boundary of the initial plastic domain (point A in Fig. 1,
referring to n = 0.75, S, = 2.049). Plastic flow may develop, but it is elastically contrasted
as long as p. is different from zero and, hence, S may increase; in this process, the stress
point keeps in contact with the yield surface and from the condition ® = 0 the value of
is readily computed. From eqns (51) one obtains

l+n

N (54)

w =

The value, eqn (54), of 7 is real as long as the term under the square root is positive, i.e. up
to the value

N (55)

The limit situation for the stress path, eqns (48), has now been reached, the values o, = S o,
o, = nSiop being on the boundary of the limit domain eqns (52). For n =0.75 it is
S = 8/ﬁ = 4.619 and the in-plane stress components are located at the point L in Fig.
1. The yield surface ® = 0 is curve 3 (dashed) in the same figure. The two non-vanishing
components of vector N = é®/de have now equal values and opposite sign; this implies
P.+ P, = pu'P =0 and, hence, p. = 0 [see eqn (28)]: plastic flow involves in-plane com-
ponents only and collapse is no longer prevented by transverse yielding.

Note that no limit situation exists for y = 1 (o, = 0, = 6,5) : as eqns (50) and (54)
show, in this case it is 0. = 0,(S— 1) and with increasing S stresses approach a hydrostatic
state. On the other hand, when n = —1 (6, = —0,) the values of S, and S| coincide and
the limit situation is attained as soon as the elastic capabilities are exhausted.

It is of interest to consider loading histories in which S decreases after a value of § > S,
has been attained. A complete analysis is now performed for n = 0.75; the value of the
back stress parameter 7 and of the transverse stress S., eqn (50), will be computed.

When S initially increases from zero, the response is elastic up to S,. Hence

0<S<S.=2049: 7=0, S =5 (56a)

As the value S, is exceeded, eqn (54) applies and. for the value of # under consideration,
one has

S.<S<S<S: n=1(75-2,64-35%). 5 =!(7S—./64—35%). (56b)

Let the loading phase end at § = 4.0. when # = n(S) = 2.5and §. = S.(§) = 3.0. The stress
point is now the one indicated as B and the current elastic range is bounded by curve 2 in
Fig. 1. When § decreases from S, the unloading process is elastic, the back stress parameter
keeping the value 7, until the stress point gets in contact with the yield surface in the reverse
direction (point C in Fig. 1). Straightforward computations show that this happens for
S = Siy = 0.590, and one can write

7

§$>85> 5, =050: n1=25 S =1S4+1.25 (56¢)

- 16

If S is further decreased, new plastic strains are generated. By proceeding as in the loading
case, one obtains
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S, T
z
3.00

——+% L A ——

I T i T 1 s
-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

-1.00 J

Fig. 2. Back stress (n) and transverse stress (S.) histories on the cycle 04BCDO in Fig. 1.

Spy =82 —S.= —2049: 7=!(1S+2/64-35%), S.=1(75+./64—35%).
(56d)

The unloading process was stopped at S = —S,, when n =0 and the yield surface has
recovered the original position (point D in Fig. 1). Figure 2 shows how 7 and S. evolve
along the cycle. These quantities recover the original values when S goes back to zero, but
the same is not true for the in-plane plastic strain components. The example is simple
enough to permit their closed form computation and the procedure is briefly summarized.

The equivalent in-plane plastic strain measures are first evaluated. In the loading phase,
itis P, =P, =0 up to S = S.. When this value is exceeded, the normality law eqn (17a)
establishes, for the case under consideration

P, = 3’“—2 (65S+./64—35%) P, = 3’—‘2(—65+V/64—3S2). (57a,b)
By recalling eqn (49a) one obtains on this basis

/.

. . Y ya—— _ﬁ .
PP, =0 (J64-38%) = o

and, hence

(57¢)

5 4 ) Ty 1 <7+ 6S >S
A= — = —F— =
J64—38* £ 2E J64-38§° J64-3S?

where 71 was computed from the relevant expressions (56b) of n. From eqns (57) two
differential equations are obtained, which can be integrated under the initial conditions
P.(S,) = P.(S,) = 0. to give



Formulation of the elastic—plastic constitutive law 3527

E
go (pv P)
2.00 4

859

\N

/

r.7 T 1 ] C‘ 1 I T ‘ T ’ T } S
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Fig. 3. Equivalent (£,. P.) and actual (p.. p,. p.) plastic strain histories on the cycle 04ABCDO in
Fig. 1.

£ . S U3 (8438

— P, = 7(45741\64*33'%— >n < +\,~)+1'540

[ ’ 4 8_\"/35

. i U3 (e 3s

Ep _vgpt s N (ST sy, (58a)
Ty 64 16 4 8—\33

Note that the above values get unbounded for S — S, = 8/,/3. In the unloading process
from § = 4.0, the values P, = P (S). P, = P (S) remain stored for § > Sk,. When S further
decreases, differential equations similar to the previous ones can be produced and integrated
under the conditions P (Sx,) = P.. P.(Szy) = P,. One obtains

E . J— 3 /8438
Po= LS IS (Y e
O 4 §— 38
£ 19« 3 P E——— o3 8+ /'35\
— P =25 - 4 —-3S5- — v Y _ ) . . b
P =S 0438 =Y (8\; Lo (58b)

The actual plastic strain values are computed from eqns (26) and (28), which for v = 0.25
read

p. = P\f;p: p. =P, fip: p-=—2(P.+P)).
Figure 3 illustrates the evolution of equivalent and actual plastic strains for the example

SAS 32/23-K
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considered. Note that for S = — S, itis P, = p, = .859(0o/E) and P, = p, = —0.859(0,/E).
Only p. goes back to zero after the cycle.

The plane strain picture can be interpreted as follows. In the usual, three-dimensional
representation, the yield function is an unmoving cylinder in the principal stress space [its
projection on the plane g, = 0 is the limit domain eqn (52)]. Initially, the stress point moves
on the plane ¢. = v(06,+0,) (along the line S. = 75/16 for the values of v and » in the
example) ; the intersection of this plane with the von Mises cylinder, projected on . = 0,
produces the initial plane strain yield surface. When the stress point gets in contact with
the cylinder, plastic strains develop and eqn (12b) establishes o, = v(o.+0,)—Ep,
(S. = 75/16+7/2 in the example), showing that the stress plane translates parallel to itself;
as a consequence, its intersection with the cylinder, when projected on the plane, undergoes
a motion which appears as a directional, kinematic hardening.

When material hardening is present, its effects combine with the fictitious plane strain
contribution. Some typical behaviours are illustrated in Fig. 4, referring to y = 0.75 and S
increasing from zero to 4.619, the limit value for perfect plasticity. The initial elastic limit
is not affected by hardening and corresponds to the dashed curves labelled as 1. For
comparison, the perfectly plastic response is again illustrated in Fig. 4(a) ; at the final value
of S, the yield surface is curve 2.

Figure 4(b) refers to linear kinematic hardening, with ¢ = 0.1E assumed in eqn (35).
For S = 4.619, the yield surface is now curve 3: the instantaneous elastic range still
undergoes a rigid translation, which combines the fictitious, directional plane strain con-
tribution (significantly contrasted by material hardening) with an actual kinematic one.
Isotropic hardening was next included by assuming ay(k) = 6,(1 +#x), with # = 0.1 and
the strain hardening definition for k. When only this contribution is present, the evolution
of the yield surface superimposes the isotropic hardening expansion to the directional
translation (curve 4 in Fig. 4(c) for § = 4.619). Curve S in Fig. 1(d) shows the yield surface
for the same value of S when both kinematic and isotropic hardening are considered.

7. COMMENTS AND CONCLUSIONS

The elastic—plastic rate law associated to the plane strain form eqns (34), of the von
Mises yield function is completely defined by the expressions eqns (38) of vector N and
eqns (43) of hardening parameter H. It could be verified that these relations are just a
particular case of the general expressions (19) and, in fact, they could also have been
obtained by specializing the latter to the case presently considered. Their direct derivation,
however, is somewhat simpler and, it is felt, permits a better understanding of the meaning
of operations and results.

The plane strain law maintains the essential features of the original one. In particular
Drucker’s postulate conditions are complied with if obeyed by the material law. That is

(6—6)"P >0 V¢ such that ®(6, P, k) <0 (59a)
if
(6,—6,)¢, >0 Vé, such that ®(6,, ¢/, k) <0 (59b)
and
6'P>0 VP (60a)
if
6,65 =0 Ve (60b)

The above result was established in Corradi and Gioda (1979) for the general plane strain
expressions eqn (16)—(19) and no further proof is needed. Its validity in the present context,
however, is easily checked. Equation (59a) implies convexity for the instantaneous elastic
domain ® < 0 and outward normality for the equivalent, in-plane plastic strain rates P.
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The first condition is ensured since matrix M, as defined by eqn (34b), is positive definite
for all allowable values of elastic Poisson ratio, the second is established by eqns (17a), (18)
and (38). On the other hand, eqn (50a) states that the plane strain hardening parameter H
is non-negative, which is ensured by eqn (43), expressing H as the sum of two material
hardening coefficients & = H,+ Hy, non-negative if eqn (50b) holds, and of the fictitious
plane strain contribution H,, also non-negative, as shown in eqn (45).
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6.00
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(:.'fy,Xy)/cro i
6.00 . b
A 2 !
— /I
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0.00 I T I EE— (0 .X)/aq
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Fig. 4. Initial gnd final yield surfaces for a radial path from S=0 to S= 8/\/3 (n =0.75).
(a) Perfect plasticity ; (b) kinematic hardening; (c) isotropic hardening; (d) combined hardening.
+ = final position of the back-stress vector.
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Fig. 4—continued.

In this paper material softening (% < 0) was not considered, but it could be easily
incorporated. It is worth noting that in any case, the additional plane strain term Hzhasa
stabilizing effect.

With the exception of the definition of matrices, and the meaning of the variables
involved, the plane strain law is identical to a plane stress one and can be handled in the
same way. Together with the plane form of the equilibrium and geometric compatibility
conditions, it permits the formulation of the plane strain elastic—plastic problem in terms
of in-plane variables only. As for the elastic case, the problem differs from the equivalent,
plane stress one only in the expression of constitutive parameters. The information on
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plastic strains is produced in terms of equivalent in-plane values P; they are in a sense,
artificial definitions, but actual plastic strains can easily be obtained a posteriori through
eqns (26) and (28).

Finally, it must be mentioned that the procedure could also be applied to other yield
conditions, such as Tresca’s, which imply that plastic flow does not entail volume changes.
The resulting expressions, however, are not equally simple and the advantages connected
with their use are questionable.
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