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Abstract~Elastic-plastic (path dependent but time-independent) materials, linear and isotropic in
the elastic range and governed by the von Mises yield condition and the relevant associated flow
rule, are considered. Both kinematic and isotropic hardening are included. Starting from previous,
more general but partial, results and exploiting the purely deviatoric nature of plastic flow, a plane
strain version of the constitutive law is formulated in terms of in-plane variables only. The actual
plastic strains are replaced by equivalent in-plane measures and the effects of transverse yielding
appear as a fictitious, directional kinematic hardening. On this basis, the plane strain elastic-plastic
problem can be formulated in a way fully analogous to the equivalent plane stress one: as in the
elastic case, differences are confined to the expressions of the constitutive parameters.

1. INTRODUCTION

The linear elastic isotropic plane strain problem can be formulated in terms of the in-plane
variables only; the transverse normal stress (Je does not vanish, but can be computed once
the in-plane solution has been obtained. In the inelastic case, however, the constitutive law
usually depends on (J= in a complicated manner and its elimination is not equally easy. In
computations, often the same constitutive relations as for the three-dimensional case are
employed, thereby exploiting only partially the plane nature of the problem.

A plane strain formulation of the rate constitutive law for standard elastic-plastic
materials was proposed by Corradi and Gioda (1979). The plane strain hypotheses and the
elastic portion of the constitutive relation permitted the expression of (Je as a function of
the remaining stress and of the non-vanishing plastic strain components. An equivalent, in
plane yield function was defined on this basis, which did not depend explicitly on (Je, and it
was shown that the associated flow rule remained valid provided the actual plastic strains
were replaced by equivalent in-plane measures, accounting for plasticity in the transverse
direction. The effects of transverse yielding appeared as a fictitious hardening in the in
plane representation.

The formulation, however, was not completely "plane", in that the yield function was
affected by the current value of the transverse plastic strain component pzo which appeared
as an additional material state variable. Since the state is supposed to be known at the
instant at which the rate law applies, this is perfectly acceptable from a theoretical point of
view. When performing computations, however, the presence ofP= is a source of difficulties
and its elimination is desirable. This result is readily achieved if piecewise linear elastic
plastic relations are used (Cohn and Maier, 1979), and in this case the plane strain problem
differs from the equivalent plane stress one only for the constitutive law to be applied in
either case. Computations performed by Corradi and Gioda (1980) for axisymmetric
cylinders demonstrated the effectiveness of the formulation.

Even if meaningful, this is however a rather restrictive case and in general the elim
ination of Pc is not equally easy. The problem arises because, due to the irreversible nature
of plastic behaviour, the constitutive relations can only be written in terms of rates. The
rates of Pc and of the in-plane plastic strain components are related by the normality law,
but not the total values accumulated in the preceding plastic evolution. For a number of
yield conditions of engineering importance, however, normality implies that plastic strain
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rates are purely deviatoric, a feature which is shared by total values as well and permits the
elimination of all transverse components from the plane strain law.

In this paper, such a law is constructed for materials which are linear and isotropic in
the elastic range and are governed by the von Mises yield condition, accounting for, possibly
nonlinear, kinematic and isotropic hardening. For the sake of simplicity, thermal effects
are not considered; however both thermal strains and dependence of the yield condition on
temperature, in the form introduced by Prager (see Naghdi 1960), can be easily included.
Their influence was discussed in Corradi and Gioda (1979) and no difference whatsoever
arises in the present context.

Notation
A vectorial notation is mainly used. Column vectors and matrices are denoted by bold

face symbols. A row vector is indicated as the transpose of a column one. The derivative
of column vector a with respect to column vector b is defined so that the resulting matrix
M = oa/ob has components Mij = Da/abi • The derivative of a scalar with respect to a
column (row) vector is therefore a column (row) vector. Moreover for any scalar function
f(a), with a = Ab, the chain rule of differentiation states

at oa of T af
~=~~=A ~

Db ob oa oa'

Superscripts T and - 1 mean transpose and inverse, respectively. A superposed dot denotes
the time derivative. When tensorial notation is used, summation on repeated indices is
understood.

2. REVIEW OF ELASTIC-PLASTIC LAWS FOR STANDARD MATERIALS

Strains are supposed to be small enough to be treated as infinitesimal quantities. In
the absence of temperature changes, their total values Gij can be decomposed as the sum of
elastic and plastic contributions, the latter denoted by G~. For an elastically linear and
isotropic material, total strains can be written as

(1)

where bil is the unit (Kronecker) second order tensor. The plastic behaviour of the material
is governed by the von Mises yield condition. The loading (or yield) function is

(2)

where ITo is the instantaneous uniaxial yield limit, Su is the stress deviator tensor and

(3)

is the so-called back-stress tensor, also of deviatoric nature, accounting for kinematic
hardening. Equation (3) expresses it as the gradient of a twice differentiable and convex
function of the current value of total plastic strains, denoted by V = V(G~). The simplest
assumption is

Ve eP) - ~ ·cp cP
Gij - 2(vi/0ij (c > 0) (4a,b)

and is referred to as linear kinematic hardening. What follows, however, is not limited to
this case.
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Isotropic hardening is also present in eqn ~2), since the yield limit ao is a (non
decreasing) function of the internal variable K = j~ K(r) dr, with K > 0 when plastic flow
actually occurs. The two most widely used expressions, known as strain-hardening and
work-hardening, respectively, are

(5a,b)

The instantaneous elastic range is defined by the inequality ¢ ,,;; O. When ¢ = 0, plastic
strain rates may develop and are governed by the associated flow rule and Prager's con
sistency condition. They can be expressed as follows (Maier, 1969)

with

'p _ 3¢_,
c'l -:; J.

C(JI/

(6a,b)

I. = 0 if ¢ < 0

I. ): 0, ¢ ,,;; 0, ¢/, = 0 if ¢ = o.

(7a)

(7b)

Equation (6a) is often referred to as the normality law. In eqn (6b), h is the hardening
parameter, non-negative in the present context. Comparison between eqn (6b) and the
expression of the time derivative of ¢ establishes

Since

and because of eqns (3) and (6a), it is

(Sa)

where K was expressed as K = h).. In particular, from eqns (5) one obtains

(Sb,c)

3. PLANE STRAIN FORMULATION

The above relations will now be specialized for a body in a state of plane strain normal
to the z = X3 axis. The following three-component vectors are introduced

(9a)

(9b)

(9c)

(9d)

The plane strain hypothesis states that 8: = (;33' "10' = 2831 and ro, = 2(;32 are equal to zero.
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The constitutive law under consideration also entails 031 = 032 = 0 for all variables.
However, the transverse components

(ge)

do not vanish. Note that, as eqns (9a,b) show, for shearing strains the engineering definition,
twice the corresponding tensorial component, is adopted. It follows, in particular

o
I

o
(10a)

(lOb)

Function V = V(p,pJ is defined so that eqn (3) reads

av cV
X = -~ , x- =:l with V = V(p,p:).

op - UP:

The elastic portion of the constitutive law can now be split in the pair of relations

(11 )

where

rJ = D[e-(p+vppJ] (12a,b)

The vector

E
D=----

(l+v)(1-2v)

I-v

v

o

v

I-v

o

o ]
I

o
1~2" • ~ [J (13a,b)

(14)

defines the equivalent in-plane plastic strains, accounting for the transverse component
contribution through the elastic Poisson ratio v. Then, eqn (12a) becomes

rJ = D(e-P). (15)

Equation (12b) permits the elimination of (J: from the constitutive law. As was shown in
Corradi and Oioda (1979), any loading function of the form ¢ = ¢(rJ, (J:, p,pz, K) can be
transformed in the equivalent in-plane expression

(16)

Then, the rate law is expressed by the following relations, formally identical to eqns (6)
and (7)

P = N). (17a,b)

if <1> < 0

A~ 0, <il ~ 0, <ill. = 0 if <1> = 0

(18a)

(18b)
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(
C¢)2

H=h+E ~ .
(JJ:

(19a,b)

The value of the internal variable" keeps unchanged, even if in the relevant expression of
K, p is replaced by P and cr:, if present, can be eliminated.

4. PLANE STRAIN FORM OF THE VON MISES PLASTICITY CONDITION

The plane strain loading function eqn (16) contains P: as an additional material state
variable. For some plasticity laws of engineering interest. however, no volume change is
associated to plastic flow and this feature can be exploited to further simplify the plane
strain law.

The von Mises condition belongs to this category and the procedure is now illustrated
with reference to it. If written in terms of stress rather than stress deviator components, the
expression (2) of the yield function reads, in the plane strain case

(20a)

where

(1.2 = (crx -Xxf - (CJ, -X,)(cr, - X,) + (a, -X,)2 + 3(T" -Xn)2

+ «(J: - X:)2 - (a, - X, )(0': - X:) - (cr, - X,)(a: - X:) (20b)

and back-stresses are given as functions of non-vanishing plastic strain components by eqn
(11). Let the following matrix be introduced

:2 -I 0

m= -I :2 0

0 0 6

(21 )

and note that from the expression (13b) of vector II it follows liT11= 2 and mil = II. Then,
eqn (20b) can be compactly written as

(22)

with

(23a,b)

The plastic incompressibility condition reads

(24)

By introducing the above relation into eqn (14), one obtains

I-v -I'

HP = Ap A=I-VIlIlT = -I' I-v (25a,b)

0 0

Since the material is elastically compressible (I' < 0.5), matrix A is non-singular and eqn
(25a) can be inverted to give
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I [ I-v v
A 1 =-- v I-v

1-2v
o 0

o ]o .
1-2v

(26a,b)

It can be easily verified by direct substitution that the following equalities hold

-I I
Ap = (1-2v)p A p = 1-2v P.

By introducing eqn (26a) into eqn (24), account taken ofeqn (27b), one obtains

The expression (12b) of the transverse stress component then becomes

T E T
(!- = vp t1+ ---p P.

. 1-2v

This value can be substituted into eqn (23a), to get

t1* = At1--IE-, PIlTp = Alt1- E? IlpTpl.
-~v (l-2v)-

By introducing the fictitious back-stress vector

(27a,b)

(28)

(29)

0= Erp,

the above relation becomes

r = __I ppT = __1_[:
(1-2v)2 (l-2V)2 0

t1* = A[t1-0J.

(30a,b)

(31)

Now let the function V(p,Po) be expressed in terms of P by means of eqns (26a), (28) and
an equivalent, in-plane back-stress vector fJ = av/ap be introduced. Account taken of
symmetry of A, the chain rule of differentiation establishes

Hence

av cp av oPo av -I

fJ = ~p = ::>p -;;-.. - + ~.p -~ = A (X - pxJ·
C u op COp:

(32)

(33)

If eqns (31) and (33) are introduced in eqn (22), one realizes that eqns (20) are replaced by
the expression

(34a)

where
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2-2v+2v2 -1-2v+2v 2

~IM = AmA = ~ I ~2v+2v2 2-2v+2vc

0 0

c"V
X = n+p = Erp+ -;:;-- = X(P).

cP
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(34b)

(34c)

Equations (34) express the von Mises loading function in terms of in-plane variables only,
namely the in-plane stress components collected in vector a and the equivalent in-plane
plastic strains P (isotropic hardening is always governed by the additional internal variable
K). X is the total, equivalent in-plane back-stress vector composed, as eqn (34c) shows, of
two contributions: p = iJ V/ iJP incorporates the actual material kinematic hardening, while
n accounts for the effects of yielding in the transverse direction, which appear as an
additional kinematic hardening in the plane; since matrix r has rank one, this term makes
the instantaneous elastic domain move in a definite direction: eqns (30) in fact show that
it is always 7[, = Te, and 7[\j = O.

As an example, the in-plane back-stress vectors are computed for linear kinematic
hardening. Because ofeqns (4) and (lOa), the plane strain expression of function V reads

V(p,pJ = ~C(pTCp+p;).

By introducing eqns (26a) and (28), one obtains

Hence

V(P) = ~CpT0P o = A· I CA -I + r = 3M- I . (35a,b)

(36a,b)

5. THE RATE LAW

The rate relations, eqns (17) and (18) associated to the plane strain von Mises loading
function, eqns (34), are now established, i.e. the expressions for the in-plane outward
normal vector N and of the equivalent in-plane hardening parameter H are derived. Since
plastic flow can actually occur only when <1> = 0, the equality

is assumed to hold in the sequel.
The normal vector N is straightforwardly obtained by writing

a<1> I
N = --:;- = -2 M(a-X).

oa (10

(37)

(38)

To express H, consider first that. by comparing eqn (l7b) to the time derivative of <1>,
namely

one infers
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. a<1>. 0<1>
HA= --P--K.apT OK

(39)

The chain rule of differentiation and eqn (3a) state

a<J> ax a<J> ax N
OP = op ax = - oP .

From eqn (34c) it also follows

ax an ap a av
ap = ap + ap = Er + ap op .

By introducing the symmetric matrix

(40)

and by substituting eqn (l7a) for P, one obtains

(41a)

On the other hand, since K affects the loading function only through the instantaneous yield
limit 0"0, the last term in eqn (39) reads

(41b)

where, as done when writing eqns (8), K was expressed in the form

(42)

By comparing eqns (41) with eqn (39), one realizes that the hardening parameter H can be
expressed as the sum of three contributions, namely

(43)

where

(44a-{;)

The first governs the fictitious plane strain hardening. By substituting eqn (38) for N, one
obtains after some straightforward algebraic manipulations

(45)

If the material is perfectly plastic (0"0 = constant, X = n) only this contribution is present.
The second contribution H K , defined by eqn (44b), accounts for material kinematic

hardening. If this is linear, from eqn (35) follows K = 3c M-'. Then, by substituting eqn
(38) for N and remembering that when plastic flow develops eqn (37) holds, one obtains



Formulation of the elastic-plastic constitutive law 3523

(46)

Finally, HI incorporates the influence of previous plastic strain history on the instantaneous
yield limit (isotropic hardening). Its expression depends on the nature of the function
(Jo = (Jo(K) and on the definition of the internal variable K itself. In the strain-hardening
case, eqns (Sa) and (lOa) establish for Kthe expression

and, by proceeding as in the previous case, one obtains

(47a)

On the other hand, for work-hardening eqns (5b) and (lOb) yield

By using eqns (26), (28), (29) and (38), the following expression is arrived at

By substituting X - 13 for n and remembering eqn (37), one obtains the alternative
expression

h 1 Th7 = (JO(K) + -2 13 M(I1-X).
(Jo

(47b)

If material hardening is purely isotropic, f3 = 0 and the two expressions (47) for hI become
identical, provided that the relevant definitions for K are given the same dimension for
multiplying the first, or dividing the second, by (Jo(K). It is in fact well known that in this
case the same behaviour can be represented by either definition. When kinematic and
isotropic hardening are combined differences arise. Note, in particular, that h7h depends
explicitly on the equivalent in-plane back-stress vector 13. Note also that in eqn (43) the
sum h = HK+HI is the original, material hardening coefficient, which is now expressed in
terms of in-plane variables, but keeps its value unchanged.

6. ILLUSTRATIVE EXAMPLE

Some aspects of the plane strain behaviour are now discussed with reference to an
example. The value v = 0.25 is assumed for the elastic Poisson ratio and the following stress
states are considered

(48)

where 0"0 is the initial yield limit.
A peculiar feature of the plane strain representation is the fictitious hardening con

tribution. This is present even if the material is perfectly plastic and this case is first
examined. The back stress vector coincides with n, eqns (30), and, for the value of v
considered, reads
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8.00

~~- '\

(3) /
/

8.00

N

4.00-

-4.00
/

I-~-' -·~-Ql9G-~"'--~~-'-----"I---'----~· (a"X,llao

4.00 4.00

Fig. I. Evolution of the plane strain yield surface for perfect plasticity. Stress path eqn (48) with
'I = 0.75. (1) Initial position; (2) position for S = 4.0; (3) limit situation (S = 8/fi)·

E
n = 4-(P,+P j )

0"0
(49a,b)

(the bar over ITo was eliminated, the yield limit being constant). Note that the stress path
egns (48) is radial only in the plane, since the transverse stress component ITz is not
proportional to S. In fact, account taken of the above relations, egn (29) becomes

IT. I+ry I
S. = -"- = --S+;n.

- ITo 4 ~
(50)

By introducing egns (48) and (49) in egn (34a), the following expression for the plane strain
yield function is arrived at

(51 )

In the plane O",-IT" the elastic range is bounded by the instantaneous yield surface <I> = 0,
an ellipse centered at the point X, = X, = n, the current value of the back stress parameter
egn (49b). Initially it is n = 0 and the ellipse is centred at the origin (curve I in Fig. 1).
When the plastic flow develops, the yield surface translates along the IT, = IT) axis, remaining
within the strip

1 2
- --'== ITo ;( 0", - 0"/ ;( ---:= 0" 0

J3 J3
(52)

which defines the plane strain limit domain for perfectly plastic materials.
When S increases from zero, the response is elastic up to the value
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(53)

The stress point is now on the boundary of the initial plastic domain (point A in Fig. I,
referring to Yf = 0.75, Se = 2.049). Plastic flow may develop, but it is elastically contrasted
as long as jJ, is different from zero and, hence, S may increase; in this process, the stress
point keeps in contact with the yield surface and from the condition <I> = 0 the value of n
is readily computed. From eqns (51) one obtains

(54)

The value, eqn (54), of IT is real as long as the term under the square root is positive, i.e. up
to the value

(55)

The limit situation for the stress path, eqns (48), has now been reached, the values ax = SLaO,
a) = y/SLaO being on the boundary of the limit domain eqns (52). For Yf = 0.75 it is
SL = 8/J3 = 4.619 and the in-plane stress components are located at the point L in Fig.
I. The yield surface <I> = 0 is curve 3 (dashed) in the same figure. The two non-vanishing
components of vector N = 0<1>/0(1 have now equal values and opposite sign; this implies
Px +Py = liP = 0 and, hence, Pc = 0 [see eqn (28)] : plastic flow involves in-plane com
ponents only and collapse is no longer prevented by transverse yielding.

Note that no limit situation exists for Yf = I (ax = a) = aoS): as eqns (50) and (54)
show, in this case it is a, = O"o(S - I) and with increasing S stresses approach a hydrostatic
state. On the other hand, when Yf = - I (ax = - aJ the values of Se and SL coincide and
the limit situation is attained as soon as the elastic capabilities are exhausted.

It is of interest to consider loading histories in which S decreases after a value of S > Se
has been attained. A complete analysis is now performed for Y/ = 0.75; the value of the
back stress parameter n and of the transverse stress S" eqn (50), will be computed.

When S initially increases from zero, the response is elastic up to Se' Hence

o:S; S:S; Sc = 2.049: n = 0, S, = T6S, (56a)

As the value Sc is exceeded, eqn (54) applies and. for the value of Yf under consideration,
one has

Let the loading phase end at S = 4.0, when ft = n(S) = 2.5 and S, = SeeS) = 3.0. The stress
point is now the one indicated as B and the current elastic range is bounded by curve 2 in
Fig. 1. When S decreases from S, the unloading process is elastic, the back stress parameter
keeping the value ft, until the stress point gets in contact with the yield surface in the reverse
direction (point C in Fig. I). Straightforward computations show that this happens for
S = SRY = 0.590, and one can write

S~ S ~ SRI = 0.590: n = 2.5. S, = ~S+ 1.25. (56c)

If S is further decreased, new plastic strains are generated. By proceeding as in the loading
case, one obtains
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S
4.00

1t

3.002.001.00

3.00 f'
,-----===---;L~

-1.00 J

-3.00

Fig. 2. Back stress (n) and transverse stress (Sci histories on the cycle OABCDO in Fig. 1.

SRI?: S?: -Se = -2.049: 1[ = ~(7S+2v164-3S2), Sc = i(7S+J64-3S2
).

(56d)

The unloading process was stopped at S = ~ Se, when 1[ = 0 and the yield surface has
recovered the original position (point D in Fig. I). Figure 2 shows how 1[ and So evolve
along the cycle. These quantities recover the original values when S goes back to zero, but
the same is not true for the in-plane plastic strain components. The example is simple
enough to permit their closed form computation and the procedure is briefly summarized.

The equivalent in-plane plastic strain measures are first evaluated. In the loading phase,
it is P, = P, = 0 up to S = Se' When this value is exceeded, the normality law eqn (l7a)
establishes, for the case under consideration

(57a,b)

By recalling eqn (49a) one obtains on this basis

and, hence

(57c)

where it was computed from the relevant expressions (56b) of 1[. From eqns (57) two
differential equations are obtained, which can be integrated under the initial conditions
P.(Se) = P, (Se) = 0, to give
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~ (p, P)
o

2.00

-,--,----,--,1 S

5.00

.859 l'------i

-2.00

Fig. 3. EquIvalent (P" P) and actual (1'" 1',_ pel plastic strain histones on the cycle OARCDO in
Fig. I

-

E s 1 Ii ,,3 (8 + V 3S)-- P, = ~ 4 S ~ 4 '\. 64 ~ 3S + - In·· '. e:-- + 1. 540
(in" 4 8 - ;1Sv··

(58a)

Note that the above values get unbounded for S --> SI = 8 v 3. In the unloading process
from S = 4.0, the values P, = P,(S). P, = P, (S) remain stored for S ? SRY' When Sfurther
decreases, differential equations similar to the previous ones can be produced and integrated
under the conditions P,(S/o) = P" P,(SRl) = P,. One obtains

-

E s _ 1 ;--------, ,,3 (8 + 3S)
P, = ~(,4S+4" 64~3S + "j ln -:-._ ~0.68l

ITo 4 8~v3S

E 19 -,'--,;i" '\. 3 (/ 8+ V 3S\)
-P, = A4S~lh" 64~3S --- In- ..•~ +0.681.

ITo 4 8~ .1S". /

(58b)

The actual plastic strain values are computed from eqns (26) and (28), which for v = 0.25
read

Figure 3 illustrates the evolution of equivalent and actual plastic strains for the example

SAl 32/23-K
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considered. Note that for 5 = -5e it is P, = Px = .859«(Jo/E) and Py = Py = -0.859«(Jo/E).
Only P= goes back to zero after the cycle.

The plane strain picture can be interpreted as follows. In the usual, three-dimensional
representation, the yield function is an unmoving cylinder in the principal stress space [its
projection on the plane (Jz = 0 is the limit domain eqn (52)]. Initially, the stress point moves
on the plane (Jz = v«(Jx+(J,.) (along the line 5z = 75/16 for the values of v and 11 in the
example); the intersection of this plane with the von Mises cylinder, projected on (Jz = 0,
produces the initial plane strain yield surface. When the stress point gets in contact with
the cylinder, plastic strains develop and eqn (12b) establishes (Jz = v«(Jx+(Jy)-Epz
(5= = 75/!6 + n/2 in the example), showing that the stress plane translates parallel to itself;
as a consequence, its intersection with the cylinder, when projected on the plane, undergoes
a motion which appears as a directional, kinematic hardening.

When material hardening is present, its effects combine with the fictitious plane strain
contribution. Some typical behaviours are illustrated in Fig. 4, referring to 11 = 0.75 and 5
increasing from zero to 4.619, the limit value for perfect plasticity. The initial elastic limit
is not affected by hardening and corresponds to the dashed curves labelled as 1. For
comparison, the perfectly plastic response is again illustrated in Fig. 4(a) ; at the final value
of 5, the yield surface is curve 2.

Figure 4(b) refers to linear kinematic hardening, with c = O.IE assumed in eqn (35).
For 5 = 4.619, the yield surface is now curve 3: the instantaneous elastic range still
undergoes a rigid translation, which combines the fictitious, directional plane strain con
tribution (significantly contrasted by material hardening) with an actual kinematic one.
Isotropic hardening was next included by assuming (Jo(K) = 0'0(1 + 11 K), with 11 = 0.1 and
the strain hardening definition for K. When only this contribution is present, the evolution
of the yield surface superimposes the isotropic hardening expansion to the directional
translation (curve 4 in Fig. 4(c) for 5 = 4.619). Curve 5 in Fig. I(d) shows the yield surface
for the same value of 5 when both kinematic and isotropic hardening are considered.

7. COMMENTS AND CONCLUSIONS

The elastic-plastic rate law associated to the plane strain form eqns (34), of the von
Mises yield function is completely defined by the expressions eqns (38) of vector Nand
eqns (43) of hardening parameter H. It could be verified that these relations are just a
particular case of the general expressions (19) and, in fact, they could also have been
obtained by specializing the latter to the case presently considered. Their direct derivation,
however, is somewhat simpler and, it is felt, permits a better understanding of the meaning
of operations and results.

The plane strain law maintains the essential features of the original one. In particular
Drucker's postulate conditions are complied with if obeyed by the material law. That is

if

and

if

(a-a)Tp ~ 0 va such that <D(a,p,K) ~O (59a)

(59b)

(60a)

(60b)

The above result was established in Corradi and Gioda (1979) for the general plane strain
expressions eqn (16)-(19) and no further proof is needed. Its validity in the present context,
however, is easily checked. Equation (59a) implies convexity for the instantaneous elastic
domain <D ~ 0 and outward normality for the equivalent, in-plane plastic strain rates P.
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The first condition is ensured since matrix M, as defined by eqn (34b), is positive definite
for all allowable values of elastic Poisson ratio, the second is established by eqns (17a), (18)
and (38). On the other hand, eqn (50a) states that the plane strain hardening parameter H
is non-negative, which is ensured by eqn (43), expressing H as the sum of two material
hardening coefficients h = H/+ H K , non-negative if eqn (SOb) holds, and of the fictitious
plane strain contribution HE, also non-negative, as shown in eqn (45).

(a)

(b)

/

(a ,x )/a

.OOl' 0

4.00

2.00

(a ,X )/a
y y 0

6.00
(2)

/

Fig. 4. Initial and final yield surfaces for a radial path from S = 0 to S = 8/J3 (rr = 0.75).
(a) Perfect plasticity; (b) kinematic hardening; (c) isotropic hardening; (d) combined hardening.

+ = final position of the back-stress vector.
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Fig. 4-continued.

In this paper material softening (h < 0) was not considered, but it could be easily
incorporated. It is worth noting that in any case, the additional plane strain term HE has a
stabilizing effect.

With the exception of the definition of matrices, and the meaning of the variables
involved, the plane strain law is identical to a plane stress one and can be handled in the
same way. Together with the plane form of the equilibrium and geometric compatibility
conditions, it permits the formulation of the plane strain elastic-plastic problem in terms
of in-plane variables only. As for the elastic case, the problem differs from the equivalent,
plane stress one only in the expression of constitutive parameters. The information on
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plastic strains is produced in terms of equivalent in-plane values P; they are in a sense,
artificial definitions, but actual plastic strains can easily be obtained a posteriori through
eqns (26) and (28).

Finally, it must be mentioned that the procedure could also be applied to other yield
conditions, such as Tresca's, which imply that plastic flow does not entail volume changes.
The resulting expressions, however, are not equally simple and the advantages connected
with their use are questionable.
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